

DC Number	DC8
Title of the	Advanced Control for Highly Energy-Efficient Buildings and Neighbourhoods
PhD Project	
Keywords	Learning-based and data-driven predictive control, distributed optimisation, multi-energy networks,
	intelligent buildings
Recruitment	University of Manchester
organisation	
Supervisors	Alessandra Parisio (UMAN) – <u>alessandra.parisio@manchester.ac.uk</u>
names and	
contacts	
Scientific	Operating energy systems with increased penetration of variable renewable generation cost-
context and	effectively and securely will be increasingly challenging and, in this context, the role of buildings and
objectives	technologies that can support flexible and efficient grid operation. System Operators worldwide are
	increasingly aware that the number of significant losses and their absolute size will increase over the
	vears hence building and demand-side participation is essential for addressing this issue and bridging
	the gap to net zero. It is timely and essential to provide a methodology to assess the technical
	capability of building- and neighbourhood- demand and storage technologies to address the
	challenges related to the safe aggregation of a large number of simultaneous device responses and to
	the close coordination of the requirements of both the transmission and distribution network
	operators. Building upon existing expertise (e.g., [1-3]), the focus of this project is to devise and
	demonstrate a highly scalable learning-based distributed control framework for transforming
	buildings into positive energy neighbourhoods through advanced automation, which procures
	flexibility to support more efficient grid operation. Physics informed data-driven approached will be
	adopted, with consideration of the building geographical location, of the network connections and of
	the associated sources of uncertainty in both network and building operation, such as renewable
	power generation, inflexible demand and consumers patterns.
	collaboration with other doctoral students and colleagues working on relevant projects, such as the
	Supergen Energy Network Impact Hub
Required skills	• A degree in the general areas of electrical and electronic engineering computer science and
nequirea sitilis	engineering, with a focus on control and automation, energy and power systems.
	 Sound knowledge of dynamic modelling of power and energy systems, control or optimization
	methods.
	• Proven experience in modelling and optimisation studies within Matlab or Julia/Phyton.
	Experience with DigSILENT/PowerFactory environments would be desirable.
	• Ability to effectively liaise and collaborate with multinational and multidisciplinary teams.
	 Ability to work independently and write high quality technical reports.
	• Demonstrate a flexible approach to working, with the willingness to travel and participate to the
	project meetings and international events.
	 Ability to work to deadlines and deliver high quality results on time.
	 Proven, high proficiency in spoken and written English.
Language	To study the University of Manchester students need to meet the requirements as indicated on
requirements	https://www.manchester.ac.uk/study/international/admissions/language-requirements and in
	particular securing an IELTS score of at least 6.5 overall with a minimum of 6.0 in each component
	OR securing a TOEFL IBT score of 90 with no less than 20 in each component equivalent OR
	equivalent. Project supervisor teams may recommend a candidate who has excellent English
	anguage skills but otherwise has not formal certification of such. Please note that a timely
	of student visas to the LIK. For some projects an ATAS contificate may also be required
	of student visas to the OK. For some projects an AIAS certificate may also be required.

References	[1] M. Taylor, O. Marjanovic and A. Parisio, "Decentralized Supervisory Control of Networked Multi- energy Buildings," in IEEE Transactions on Control Systems Technology, 2024
	[2] Y. Xu, A. Parisio, Z. Li, Z. Dong and Z. Ding, "Optimization-based Ramping Reserve Allocation of
	BESS for AGC Enhancement," in IEEE Transactions on Power Systems, 2023
	[3] T. Zhao, A. Parisio, J. V. Milanovic, "Distributed Control of Battery Energy Storage Systems in
	Distribution Networks for Voltage Regulation at Transmission-Distribution Network Interconnection
	Points", Control Engineering Practice, 2022