

DC Number	DC7
Title of the	Robust and optimal planning of district heating networks for next-generation energy systems
PhD Project	
Keywords	District heating networks, Topology optimization, Robust optimal design
Recruitment	Flemish Institute for Technological research (VITO)
organisation	
Enrolling	KU Leuven
university	
Supervisors	Robbe Salenbien (robbe.salenbien@vito.be) and Maarten Blommaert
names and	(maarten.blommaert@kuleuven.be)
contacts	
Scientific	Heating networks are considered one of the core technologies to enable renewable space heating,
context and	and to overcome the current reliance on gas and oil. Using thermal storage, they offer a cost-effective
objectives	way to provide flexibility for electrical grids that become more and more subject to the intermittency
	of renewables like wind and PV. In addition, next-generation heat networks that operate at low
	temperatures, are able to incorporate high shares of renewable-based heat sources and waste heat
	sources. However, the planning of such systems is no straightforward task, especially in existing
	systems that were built for high-temperature, fossil fuel-based operation. Moreover, the physics of
	the system is nonlinear in nature and their optimal planning is case specific and involves several
	uncertain parameters that impact the viability of the project. Therefore, automated design methods
	can seriously facilitate this process.
	To fundamentally tackle the design problem, the PhD student starts from the novel optimal design
	approach that was recently developed in a collaboration between KU Leuven and VITO in the
	framework of EnergyVille, which is the first to realize physics-based optimal design of network
	topologies for heating networks of practical size [1-3]. On this basis, a framework will be developed
	for the optimal retrofitting of existing infrastructure to robust, flexible, and energy-efficient low-
	temperature networks. By considering heat production, network changes, and redesign of substations
	as part of the optimization, the limits of waste heat integration are aimed for through an optimal
	decrease of operational temperatures. Simultaneously, robust operation has to be guaranteed to
	ensure user comfort.
	The DbD student will be next of MTO/s TUEC shows in Energy Mile and will work in class callebourties.
	The PhD student will be part of VITO's THES group in EnergyVille and Will work in close collaboration
	with KU Leuven's <u>IDEAL group</u> [4]. Inrough the strong collaborations between researchers of both
	groups, the PhD research keeps a close link to both the development of model-based optimal design
	algorithms, as well as to the application in district heating development projects in Belgium.
	moreover, the successful applicant for this position will be enrolled in the excellent doctoral training
Doguirod dille	Program of NU Leuven's Arenderg Doctoral School.
	interested in the development of models and entimization precedures for the design of next
	apprention district heating networks. Moreover, you are a team player that onlove collaborating with
	benchation district reacing networks. Moreover, you are a team player that enjoys conaborating with neonle within the research group, the project, and beyond, and have:
	• A master's degree in Engineering with a background in mechanical engineering, computer science
	or related field from a reputable institute, with outstanding study results
	 A background in numerical modelling
	 The qualities to carry out independent research demonstrated e.g. by the grades obtained on
	vour MSc thesis
	A critical and practical mindset
	Very good knowledge of English

	 Additional research/educational experience in any of the following topics is considered a strong advantage: Coding in languages such as MATLAB or python. (Gradient-based) numerical optimization, District heating and cooling, Flow and heat transfer modelling.
	Topology optimization.
References	[1] Wack, Y., Sollich, M., Salenbien, R., Diriken, J., Baelmans, M., Blommaert, M. (2024). A Multi-Period Topology and Design Optimization Approach for District Heating Networks. Preprint in <u>arXiv:2401.15976</u>
	[2] Wack, Y., Baelmans, M., Salenbien, R., Blommaert, M. (2023). Economic topology optimization of District Heating Networks using a pipe penalization approach. <i>Energy</i> , <i>264</i> , Art.No. 126161. <u>doi:</u> 10.1016/j.energy.2022.126161
	[3] Blommaert, M., Wack, Y., Baelmans, M. (2020). An adjoint optimization approach for the topological design of large-scale district heating networks based on nonlinear models. <i>Applied Energy</i> , <i>280</i> , Art.No. 116025. <u>doi: 10.1016/j.apenergy.2020.116025</u>