

DC Number	DC12
Title of the	Smart Control of Floating Wind Turbine with Grid Integration
PhD Project	
Keywords	Nonlinear control, Power Systems, Artificial Intelligence
Recruitment	Ecole Centrale de Nantes France
organisation	
Supervisors	M. A. Hamida mohamed.hamida@ec-nantes.fr , F. Plestan franck.plestan@ec-nantes.fr
names and	
contacts	
Scientific	Floating wind turbines are under-actuated and disturbed, with conflicting control objectives (motion
context and objectives	limitation, power optimization, non-excitation of degrees of freedom, coupling). This calls for control
	algorithms that ensure turbine stability and maximized power. Regions II and III of operation are
	considered: Region II with a wind speed between the cut-in speed and the rated speed, and Region III
	with a wind speed above the rated speed. Control in Region III is well mastered [1], [2] by using
	advanced control strategies. However, these strategies have not been applied to the control of
	floating wind turbines in Region II [3], or in the transition between Regions II and III. In addition, the
	integration of power into the electrical grid must both meet demand and contribute to its stability in
	terms of frequency and voltage amplitude, despite variations in electromagnetic torque. The
	objectives of this PhD are:
	Objectives 1 to use robust adaptive sliding mode control techniques (developed at LS2N from
	a theoretical point of view, including AI tools) in Region II to optimize energy output and limit
	the movements of the floating structure.
	 <u>Objective 2</u> is to develop control strategies for inter-region II-III by validating this solution on a Hardware in the Loop simulator combining digital simulator and power conversion systems.
	• Objective 3 is to study control architectures so that the power can respond to network
	demand by ensuring its stability in terms of frequency and voltage amplitude, despite
	variations in electromagnetic torque due, for example, to the movement of the floating
	platform.
Required skills	 Master degree in Systems and Control Engineering, Electrical Engineering with strong
	background on control of electrical systems
	• Proven experience in control theory with application to electrical systems. Experience with
	wind turbines/openFast tool would be desirable
	Ability to work scientifically, independence, flexibility, teamwork and communication skills
	 Ability to work to deadlines and deliver high quality results on time.
	 Very good knowledge of English
References	[1] C Zhang, F Plestan, "Individual/collective blade pitch control of floating wind turbine based on
	adaptive second order sliding mode", Ocean Engineering 228, 108897, 2021
	[2] M.J. Mirzaei, M.A. Hamida, F. Plestan, Neural network-based supertwisting control for floating
	wind turbine in region III, IFAC-PapersOnLine 56 (2), 336-341, 2023
	[3] E. Aslmostafa, M. A. Hamida, F. Plestan "Nonlinear control strategies for a floating wind turbine
	with PMSG in Region 2: a comparative study based on the OpenFAST platform", Ocean Engineeering,
	second round 2024.